
Two More Strategies to Speed Up Connected
Components Labeling Algorithms

Federico Bolelli, Michele Cancilla, Costantino Grana

Dipartimento di Ingegneria “Enzo Ferrari”
Università degli Studi di Modena e Reggio Emilia

Via Vivarelli 10, Modena MO 41125, Italy
name.surname@unimore.it

Abstract. This paper presents two strategies that can be used to im-
prove the speed of Connected Components Labeling algorithms. The
first one operates on optimal decision trees considering image patterns
occurrences, while the second one articulates how two scan algorithms
can be parallelized using multi-threading. Experimental results demon-
strate that the proposed methodologies reduce the total execution time
of state-of-the-art two scan algorithms.

Keywords: Connected Components Labeling; Binary Decision Trees;
Parallelization; Optimization.

1 Introduction

Connected Components Labeling (CCL) of binary image is a fundamental task
in several image processing and computer vision applications ranging from video
surveillance to medical imaging. CCL transforms a binary image into a symbolic
one in which all pixels belonging to the same connected component are given the
same label. Thus, this transformation is required whenever a computer program
needs to identify independent components. Moreover, given that labeling is the
base step of most real time applications it is required to be as fast as possible.
Since labeling is a well-defined problem and the exact solution for a given image
should be provided as output, the proposals of the last twenty years have fo-
cused on performance optimization. A significant improvement was given by the
introduction of the Union-Find [17] approach for label equivalences resolution
and array-based data structures [11].

Most of the labeling algorithms employ a raster scan mask to look at neigh-
borhood of a pixel and to determine its correct label. As shown in literature,
the decision table associated to the mask which rules the scan step can be con-
verted to an optimal binary decision tree by the use of a dynamic programming
approach [8]. This approach leads to a reduction of total memory accesses and
total execution time.

Another strategy to improve the performance of existing algorithms could be
the parallelization. A simple process which divides the input image into horizon-
tal stripes and computes labeling separately on each one is described in [3]. The



p q r
s x

(a)

0 - - - - 1

1 0 0 0 0 1

1 1 0 0 0 1

1 0 1 0 0 1

1 0 0 1 0 1

1 0 0 0 1 1

1 1 1 0 0 1 1

1 1 0 1 0 1

1 1 0 0 1 1 1

1 0 1 1 0 1 1

1 0 1 0 1 1 1

1 0 0 1 1 1

1 1 1 1 0 1 1 1

1 1 1 0 1 1 1 1

1 1 0 1 1 1 1

1 0 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1

x 
= 

r 
+ 

s

assign merge

x 
= 

p

x 
= 

q

x 
= 

r

x 
= 

s

x 
= 

p
 +

 r

n
o

 a
ct

io
n

n
e

w
 la

b
e

l

x p q r s

(b)

a b c d e f
g h i j k l
m n o p
q r s t

(c)

Fig. 1: (a) Masks used to compute labels of pixel x by SAUF algorithm, (b) its
associated OR-decision table. Finally, (c) is the mask used to compute label of
pixels o, p, s, and t by the BBDT algorithm.

general problem of Connected Components Labeling on parallel architecture was
exhaustively threated in a theoretical way by [1].

Recently, our research group released an open source C++ framework for per-
formance evaluation of CCL algorithms. The benchmarking system called YAC-
CLAB [7] (acronym for Yet Another Connected Components Labeling Bench-
mark) collects, runs, and tests the state-of-the-art labeling algorithms over an
extremely variety of different datasets solving the problem of fair evaluation of
different strategies. Results shown in this paper are produced using this tool.

With this work we experiment two strategies to improve the performance of
Connected Components Labeling applying them to the SAUF (Scan Array Union
Find) algorithm proposed by Wu et al. [18] and BBDT (Block Based with De-
cision Tree) strategy proposed by Grana et al. [8]. Firstly, we have transformed
the decision trees used by both the algorithms considering the occurrence prob-
ability of each pattern in a mask and on a reference dataset. Secondly, we have
parallelized both the algorithms, evaluating the benefits and limits of different
approaches. Then we have tested all resulting algorithms on different datasets
and environments to highlights their different behaviors.

The rest of this paper is organized as follows: in Section 2 we give an overview
of existing Connected Components Labeling algorithms; Sections 3 and 4 con-
tain the description of the implemented strategies, which are then evaluated in
Section 5. Finally, we draw the conclusions in Section 6.

2 Previous Works

Connected Components Labeling has a very long story full of different strategies
that can be classified in three different main groups:

– Raster Scan algorithms which scan the image exploiting a mask (see for in-
stance Figure 1) and solve equivalences between labels using different strate-



gies. Multiscans approaches [10], for example, scan the image alternatively in
forward and background directions to propagate labels until no changes oc-
cur in the output matrix. On the other hand, modern Two Scan algorithms
[8,12,17,18] solve equivalences between labels on-line during the first scan,
usually storing them in a Union-Find tree (i.e. a 1-D array also called P ).
Provisional labels in the output image are then replaced with the smallest
equivalent label found in the flattened P array.

– Searching and Label Propagation algorithms [15] scan the image until an
unlabeled pixel is found: it receives a new label which is then repetitively
propagated to all connected pixels. The process end when unlabeled pixels
no longer exist. These algorithms scan the image in an irregular way.

– Contour Tracing techniques [4] exploit a single raster scan over the image.
During this process all pixels in both the contour and the immediately ex-
ternal background of an object are clockwise tagged in a single operation.
Finally, the connected components have to be filled propagating contours’
labels.

Two scan algorithms have revealed best performances [7], so our analysis
focuses on them.

The SAUF algorithm [17,18] implements the Union-Find technique with path
compression and exploits a decision tree for accessing only the minimum number
of already labeled pixels.

In [8] it was proven that, when performing 8-connected labeling, the scanning
process can be extended to block-based scanning, that scans the image in 2× 2
blocks (BBDT). In that case, because of the large number of possible combina-
tions, the final decision tree is generated automatically by another program [9].

He et al. [12] recently observed that BBDT checks many pixels repeatedly,
because after labeling one pixel, the mask moves to the next one, but many
pixels in the current mask are overlapped to the previous ones, which may have
already been checked. They thus proposed a Configuration Transition Based
(CTB) algorithm which introduces different configurations states in order to
make further decisions. This procedure reduces the number of pixels checked
and thus speeds up the labeling procedure.

Finally, Grana et al. [6] proposed an approach called Optimized Connected
Component Labeling with Pixel Prediction (PRED) which employs a reproducible
strategy able to avoid repeatedly checking the same pixels multiple times. The
first scan phase of PRED is ruled by a forest of decision trees connected into a
single graph. Each tree derives from a reduction of one complete optimal decision
tree.

3 Pattern Analysis and Modeling of Decision Trees

In [17] Wu et al. have shown that when considering 8-connected components in
a 2D image it is advantageous to exploit the dependencies between pixels in the
scan mask to reduce memory accesses. This can be performed with the use of a
decision tree which can be derived from the decision table (Figure 1b) associated



x

1

0

q

1

r

0

4

1

p

0

p

1

s

0

3

1

2

0

6

1

s

0

7

1

5

0

8

1

(a)

x

1

0

q

1

s

0

4

1

r

0

r

1

p

0

p

1

2

0

3

1

5

0

7

1

6

0

8

1

(b)

Fig. 2: Two of the optimal decision trees derivable from Rosenfeld’s mask (Figure
1a). Nodes (circle box) show the conditions to check and leaves (square box)
contain the action to perform: (1) nothing to do, (2) new label, (3) x = p, (4)
x = q, (5) x = r , (6) x = s, (7) x = r + p and (8) x = r + s.

to the scan mask. In [8] Grana et al. proposed an automatic strategy to convert
AND-decision tables to OR-decision tables and produce the associated optimal
decision tree by the use of a dynamic programming technique originally described
by Schumacher et al. [16].

The basic concept behind the creation of a simplified tree from a decision
table (with n conditions) is that if two branches lead to the same action the
condition from which they originate may be removed. Thus, this conversion
can be interpreted as the partitioning of an n-dimensional hypercube where
the vertexes correspond to the 2n possible rules. Associating to each condition
removal a unitary gain we can select the tree which maximizes the total gain
and minimizes the number of memory accesses. Moreover, in [9], an exhaustive
search procedure is provided to select the most convenient action among the
alternatives in the OR-decision table. This strategy is also proven to generate
always one of the possible optimal decision trees. A more detailed description of
the tree generation can be found in [8].

In Figure 2 we have reported an example of two equivalent optimal decision
tree associated to the SAUF algorithm. The Figure 2a shows the tree presented
by Wu et al. in [17], while 2b is another tree obtainable from the original OR-
decision table.

The novelty of the proposed approach lies on the analysis of the occurrence
frequencies of each pattern derived from a mask on a reference dataset. If we
generate the trees considering pattern probabilities, we are able to reduce the



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 1 0 0

0 0 1 0 0 0 1 0 0 0 1 0 1 1 1 0 0 1 0 0 1 0

0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 1 1 1 0

0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0

0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0

0 1 1 1 0 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(a)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 0 0 2 2 2 0 0 0 3 0 4 0 0 5 5 0 0

0 0 34 0 0 0 35 0 0 0 36 0 37 37 37 0 0 38 0 0 39 0

0 0 34 0 0 0 35 0 0 0 36 0 0 37 0 0 0 38 38 38 39 0

0 0 34 0 0 0 35 0 0 0 36 0 0 37 0 0 0 38 0 0 0 0

0 0 34 0 0 0 35 0 0 0 36 0 0 37 0 0 0 38 0 0 40 0

0 34 34 34 0 0 0 35 35 35 0 0 37 37 37 0 0 0 38 38 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(b)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 1 0 0

0 0 1 0 0 0 1 0 0 0 1 0 1 1 1 0 0 1 0 0 1 0

0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 1 1 1 0

0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0

0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0

0 1 1 1 0 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 0 0 2 2 2 0 0 0 3 0 4 0 0 5 5 0 0

0 0 1 0 0 0 2 0 0 0 2 0 3 3 3 0 0 5 0 0 5 0

0 0 67 0 0 0 68 0 0 0 69 0 0 70 0 0 0 71 71 71 71 0

0 0 67 0 0 0 68 0 0 0 69 0 0 70 0 0 0 71 0 0 0 0

0 0 67 0 0 0 68 0 0 0 69 0 0 70 0 0 0 71 0 0 72 0

0 67 67 67 0 0 0 68 68 68 0 0 70 70 70 0 0 0 71 71 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 0 0 2 2 2 0 0 0 3 0 3 0 0 4 4 0 0

0 0 1 0 0 0 2 0 0 0 2 0 3 3 3 0 0 4 0 0 4 0

0 0 1 0 0 0 2 0 0 0 2 0 0 3 0 0 0 4 4 4 4 0

0 0 1 0 0 0 2 0 0 0 2 0 0 3 0 0 0 4 0 0 0 0

0 0 1 0 0 0 2 0 0 0 2 0 0 3 0 0 0 4 0 0 4 0

0 1 1 1 0 0 0 2 2 2 0 0 3 3 3 0 0 0 4 4 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(c)

Fig. 3: (a) Example of binary image depicting text, (b) its labeling considering
only the first scan of the parallel implementation of SAUF (two threads), and
finally (c) its labeling result.

average number of memory accesses for a specific kind of images. In this case the
gain obtained by a condition removal is related to the frequency of associated
patterns. We expect that the greater the complexity of the mask is, the higher
the gain given by this operation will be.

4 Parallel Connected Components Labeling

Modern computer architectures are multi-cores and support multi-threaded ap-
plications, so it is convenient to analyze how much the performance of CCL
algorithms scale up when multi-threading is involved. The goal is to spread the
computational cost among different threads without increasing the execution
time with heavy synchronization mechanisms. A basic approach to parallelize
two scan labeling algorithms divides images into stripes (chunks) and operates
with the following three steps [3]:

1. Compute first scan on each stripe (in parallel);
2. Merge border labels and flatten equivalences array P ;
3. Compute second scan on each stripe (in parallel).

Assuming to have n workers available to compute labeling, we can spread
the computational cost for the first scan between them dividing the image in n
parts. In order to be cache friendly we choose to cut the image horizontally. Each
stripe is then labeled independently (first scan) by each worker using provisional
labels.

To avoid getting overlapped labels among different stripes, each thread must
use a different set of initial provisional labels. When using 8-connectivity, each
2×2 block of pixels can only contain a single label, so the starting label number
for a given thread can be easily calculated as⌊

ri + 1

2

⌋
·
⌊
w + 1

2

⌋
+ 1, (1)

where ri represents the index of the i-th chunk’s first row and w is the image
width. The background will always take label zero. During the first scan, threads
have also to collect any possible equivalence between labels and store it in the



P array. To avoid collisions each stripe deals with a disjoint set of labels and
this implies non overlapped accesses to the array storing the equivalences. In
Figure 3b an example of the resulting image from the first scan is reported when
two threads are involved.

After the first scan we have to establish a bridge between two adjacent chunks
with the operation of Merge (Union of the Union-Find approach). This is re-
quired since chunks are labeled with uncorrelated provisional labels. In order to
compute Merge we use masks reported in Figure 4.

There are basically two strategies to figure out this problem and they are
listed below.

– Sequential Merge scans each chunk’s border sequentially and does not employ
multi-threading, avoiding collision management in label equivalences array.

– Logarithmic Merge already proposed in [3], employs multi-threading to speed
up this operation. Indeed, we can operate concurrently on two or more chunks
when they are not accessed at the same time by another thread.

For example, if we consider an image processed with eight threads hence divided
into eight stripes the Sequential Merge requires 7 stages for merging chunks while
the Logarithmic one only 3 (log2 8).

The second approach, compared to the Sequential one, leads, at least in
theory, to better performance. However, the management of Logarithmic Merge
is more complex when the number of threads is not a power of two, so a correct
implementation of it must include additional conditional statements. Hence, as
shown in Table 1 the Sequential Merge operation performs better if compared
with Logarithmic. Due to this, all parallel results shown in Section 5 are obtained
using Sequential Merge.

It is important to notice that the described approach leads to a fragmented
array of equivalences and consequently the Union-Find tree needs to be flattened
in a hop-by-hop way. This behavior is linked to the possibility of having a lot of
unused provisional labels associated to each chunk in the P array.

To conclude the labeling process, the second scan is done in parallel by the
same number of threads and using the same mask of the first scan. Second scan
better suits the multi-threading approach because it contains few conditional
statements.

p q r
x

(a)

p - q - r -
- - - - - -

x -
- -

(b)

Fig. 4: (a) Merge mask used by SAUF parallel algorithm and (b) by BBDT
parallel algorithm.



Table 1: Comparison between Sequential and Logarithmic Merge incidence (in
percentage) with respect to the total execution time. The reported values are
calculated considering all YACCLAB datasets, with different number of threads
(hence chunks) and using BBDT parallel algorithm.

2 chunks 4 chunks 8 chunks 16 chunks 24 chunks

Sequential 0.45 % 1.49 % 3.35 % 5.34 % 7.10 %

Logarithmic 0.84 % 3.64 % 6.11 % 7.63 % 8.73 %

5 Experimental Evaluation

In order to produce an overall view of the proposed methods performance, we
ran each algorithm using the YACCLAB tool on different environments: a Win-
dows server with two Intel Xeon X5650 CPU @ 2.67GHz and Microsoft Visual
Studio 2013 and a Windows PC with an Intel i5-6600 CPU @ 3.30GHz running
Microsoft Visual Studio 2013. All tests were repeated 10 times, and for each
image the minimum execution time was considered in order to reduce the effects
of background processes.

In the following of this section, we use acronyms to refer to the available
algorithms: BBDT is the Block Based with Decision Trees algorithm by Grana
et al. [8], BBDT ALL and BBDT ONE are the versions of the BBDT algorithm
with optimal trees generated considering respectively patterns frequency of all
datasets described in Section 5.1 and patterns frequency of the same dataset on
which the algorithm is tested. BBDT 〈n〉 is the parallel implementation of the
BBDT algorithm run with n threads, SAUF is the Scan Array Union Find algo-
rithm by Wu et al. [18], SAUF ALL refers to the algorithm that uses the optimal
tree generated considering patterns frequency on all YACCLAB datasets, and,
finally, SAUF 〈n〉 is the SAUF parallel version run using n threads. BBDT and
SAUF are the algorithms currently included in the OpenCV’s connectedCompo-
nents function.

5.1 Datasets

The datasets used for tests are currently included in YACCLAB. All images are
provided in 1 bit per pixel PNG format, with 0 (black) being background and 1
(white) being foreground. The images can be grouped by their nature as follows:

– MIRflickr is composed by natural images, it contains 25,000 standard resolu-
tion images taken from Flickr, with an average resolution of 0.18 megapixels.

– Hamlet and Tobacco [13] are two set of document images. The first one
contains 104 images scanned from a version of the Hamlet found on Project
Gutenberg. The second one is composed of 1290 document images and it is
a realistic database for document image analysis research.

– Medical dataset, provided by Dong et al. [5], is composed of histological
images and allow to cover this fundamental field.



Table 2: Results in ms on Windows PC with i5-6600 @ 3.30 GHz and Microsoft
Visual Studio 2013 (lower is better).

BBDT BBDT ALL BBDT ONE

3DPeS 0.678 0.621 0.645

Fingerprints 0.343 0.322 0.320

Hamlet 5.284 5.048 5.252

Medical 2.273 2.154 2.213

MIRflickr 0.450 0.414 0.424

Tobacco800 7.752 7.283 7.431

– Fingerprints [14] accommodates 960 fingerprint images collected by using
low-cost optical sensors or synthetically generated.

– 3DPeS [2] is a surveillance dataset mainly designed for people re-identification
in multi-camera systems with non-overlapped fields of view. Images have an
average amount of 0.41 million of pixels to analyze and 320 components to
label.

– Random contains black and white random noise images with nine different
foreground densities (from 10% up to 90%).

A more detailed description of the YACCLAB’s datasets can be found in [7].

5.2 Frequencies Results

Firstly, we have run the tree generator algorithm described in Section 3 on
the SAUF mask considering the patterns frequency of all YACCLAB datasets.
The resulting tree is the one reported in Figure 2b, that is different from the
one proposed by Wu et al. (Figure 2a), but it is one of the optimal equivalent
trees derivable from decision table in Figure 1b without considering frequencies.
Indeed, the small number of conditions for this case limits the number of possible
operations on trees. However, Table 3b shows that the tree generated by our
algorithm requires from 0.03% to 0.27% less memory accesses when applied on
real datasets. Instead, as expected, on random dataset the number of accesses
is almost the same due to its uniform distribution of patterns’ probability. In
Table 3a comparison between execution time is also reported.

The BBDT algorithm, instead, requires much more complex trees because
of the high number of conditions to check and thus leaves space for better opti-
mization. In Table 2 the execution times of three BBDT algorithms which use
different trees are compared: the first one is obtained with uniform frequencies
(BBDT), the second one is generated considering all YACCLAB dataset fre-
quencies (BBDT ALL), and, finally, the third one employs the tree generated by
the frequencies of dataset on which it is tested (BBDT ONE). Table 2 demon-
strates that the pattern analysis leads to better performance compared to the
original BBDT algorithm. It is important to highlight that the best results are
obtained with BBDT ALL algorithm instead of BBDT ONEs: this is an unex-
pected result considering how trees have been generated. From our knowledge



Table 3: (a) Results in ms on Windows with Intel i5-6600 @ 3.30GHz and Mi-
crosoft Visual Studio 2013 (lower is better) with optimization disabled. (b) Anal-
ysis of memory accesses performed on YACCLAB dataset.

SAUF SAUF ALL

3DPeS 2.059 2.037

Fingerprints 0.847 0.844

Hamlet 15.070 14.834

Medical 6.505 6.401

MIRflickr 1.053 1.059

Tobacco800 24.667 24.606

Random 28.731 29.065

(a)

SAUF SAUF ALL

3DPeS 2 069 566 2 069 002

Fingerprints 809 288 807 136

Hamlet 14 325 113 14 310 510

Medical 7 035 408 7 028 268

MIRflickr 1 170 066 1 168 648

Tobacco800 23 873 949 23 857 166

Random 20 963 033 20 963 038

(b)

the only reasonable explanation is related to the code optimizations applied by
the compiler.

The improvements related to frequency analysis, albeit limited, are significant
given the maturity of the problem and the performance achieved by the best
existing algorithms.

5.3 Parallel Results

The parallel implementation of both BBDT and SAUF is based on the OpenCV’s
build in parallel for function. This function runs the parallel loop of one of the
available parallel frameworks, selecting it at compilation time. All parallel re-
sults presented in this paper are obtained using Intel Threading Building Blocks
(TBB). Table 4 shows the average execution time of sequential and parallel ver-
sion of both the algorithms on all dataset and with different number of threads.
Experiments reveal that the overhead introduced by the parallel for with TBB
is negligible i.e. the execution time of a sequential algorithm and its parallel ver-
sion implemented with OpenCV parallel framework and tested with one thread
is the same. As shown in Table 4, the speed up obtained with two threads on
SAUF is ×1.5 in average and it increases up to ×4 on random dataset when
12 threads are involved. Starting from 16 threads (i.e. when hyper-threading is
involved and threads share cache of both first and second level) the performance
of SAUF decrease. This could be explained by the increment of instruction cache
misses due to data overflow. For what concerns BBDT algorithm, experimental
results demonstrate a greater speed up with low number of threads (i.e. ×1.7
with 2 threads, up to ×4.7 on random dataset with 8 threads). However, in-
creasing the parallelism, as it happens with the SAUF algorithm, leads to worse
performance. Once again this behavior could be related to the increase of in-
struction cache misses that, in this case, occur starting from 8 threads, because
BBDT code footprint is much bigger than SAUF one.



Table 4: Average results in ms on a virtual Windows workstation with two Intel
Xeon X5650 CPU @ 2.67GHz (6 physical cores and 12 logical processors per
socket) and Microsoft Visual Studio 2013 (lower is better).

SAUF SAUF 2 SAUF 4 SAUF 8 SAUF 12 SAUF 16 SAUF 24

3DPeS 1.817 1.258 1.013 0.886 0.845 0.972 0.969

Fingerprints 0.793 0.548 0.431 0.361 0.338 0.402 0.426

Hamlet 13.449 8.682 6.726 5.651 5.338 5.615 5.446

Medical 6.316 4.414 3.104 2.626 2.542 2.742 2.745

MIRflickr 1.053 0.770 0.608 0.544 0.543 0.618 0.657

Tobacco800 22.075 14.362 11.083 9.445 9.057 9.457 9.166

Random 31.525 19.554 11.956 8.695 7.795 9.144 8.605

BBDT BBDT 2 BBDT 4 BBDT 8 BBDT 12 BBDT 16 BBDT 24

3DPeS 1.274 0.794 0.609 0.720 0.812 0.918 1.002

Fingerprints 0.606 0.386 0.298 0.274 0.290 0.347 0.388

Hamlet 10.528 5.989 4.342 4.528 5.186 5.423 6.146

Medical 4.945 3.051 1.831 2.060 2.407 2.621 2.998

MIRflickr 0.790 0.520 0.393 0.438 0.479 0.559 0.622

Tobacco800 16.587 9.590 6.518 7.207 8.206 9.215 10.375

Random 25.106 13.177 7.084 5.375 6.004 7.567 8.387

6 Conclusions

In this paper we presented two different approaches able to speed up two scan
Connected Components Labeling algorithms. The first strategy operates on opti-
mal decision trees in order to reduce memory accesses and improve performance.
This transformation processes can be performed off-line and requires to know
the occurrences of all possible patterns on a reference dataset or a group of them.
As shown, the proposed approach leads to an improvement of the performance
of CCL if applied to complex decision trees, such as the one implemented by
BBDT. The second strategy employs multi-threading in order to spread com-
putational cost among different processes. Differently from the first approach it
is easily applicable to all two scan algorithms. The source code of the described
algorithms is included in YACCLAB: we strongly believe that given the matu-
rity of the problem and the subtlety involved in the implementation, it should
be mandatory to allow the community to reproduce the results without forcing
everyone to reimplement every proposal. To conclude, the parallel versions of
BBDT and SAUF algorithms discussed in this paper have been submitted to
OpenCV.



References

1. Alnuweiri, H.M., Prasanna, V.K.: Parallel architectures and algorithms for image
component labeling. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 14(10), 1014–1034 (1992)

2. Baltieri, D., Vezzani, R., Cucchiara, R.: 3DPeS: 3D People Dataset for Surveillance
and Forensics. In: Proceedings of the 2011 joint ACM workshop on Human gesture
and behavior understanding. pp. 59–64. ACM (2011)

3. Cabaret, L., Lacassagne, L., Etiemble, D.: Parallel light speed labeling: An effi-
cient connected component labeling algorithm for multi-core processors. In: Image
Processing (ICIP), 2015 IEEE International Conference on. pp. 3486–3489. IEEE
(2015)

4. Chang, F., Chen, C.J., Lu, C.J.: A linear-time component-labeling algorithm using
contour tracing technique. Computer Vision and Image Understanding 93(2), 206–
220 (2004)

5. Dong, F., Irshad, H., Oh, E.Y., Lerwill, M.F., Brachtel, E.F., Jones, N.C.,
Knoblauch, N.W., Montaser-Kouhsari, L., Johnson, N.B., Rao, L.K., et al.: Com-
putational Pathology to Discriminate Benign from Malignant Intraductal Prolifer-
ations of the Breast. PloS one 9(12), e114885 (2014)

6. Grana, C., Baraldi, L., Bolelli, F.: Optimized connected components labeling with
pixel prediction. In: International Conference on Advanced Concepts for Intelligent
Vision Systems. pp. 431–440. Springer (2016)

7. Grana, C., Bolelli, F., Baraldi, L., Vezzani, R.: YACCLAB - Yet Another Con-
nected Components Labeling Benchmark. In: 23rd International Conference on
Pattern Recognition. ICPR (2016)

8. Grana, C., Borghesani, D., Cucchiara, R.: Optimized Block-based Connected Com-
ponents Labeling with Decision Trees. IEEE Transactions on Image Processing
19(6), 1596–1609 (2010)

9. Grana, C., Montangero, M., Borghesani, D.: Optimal decision trees for local image
processing algorithms. Pattern Recognition Letters 33(16), 2302–2310 (2012)

10. Haralick, R.: Some neighborhood operators. In: Real-Time Parallel Computing,
pp. 11–35. Springer (1981)

11. He, L., Chao, Y., Suzuki, K.: A Linear-Time Two-Scan Labeling Algorithm. In:
International Conference on Image Processing. vol. 5, pp. 241–244 (2007)

12. He, L., Zhao, X., Chao, Y., Suzuki, K.: Configuration-Transition-Based Connected-
Component Labeling. IEEE Transactions on Image Processing 23(2), 943–951
(2014)

13. Lewis, D., Agam, G., Argamon, S., Frieder, O., Grossman, D., J.Heard: Building a
test collection for complex document information processing. In: Proc. 29th Annual
Int. ACM SIGIR Conference. pp. 665–666 (2006)

14. Maltoni, D., Maio, D., Jain, A., Prabhakar, S.: Handbook of fingerprint recognition.
Springer Science & Business Media (2009)

15. Rosenfeld, A., Kak, A.: Digital picture processing. No. v. 1 in Computer science
and applied mathematics, Academic Press (1982)

16. Schumacher, H., Sevcik, K.C.: The synthetic approach to decision table conversion.
Commun. ACM 19(6), 343–351 (Jun 1976)

17. Wu, K., Otoo, E., Suzuki, K.: Two Strategies to Speed up Connected Compo-
nent Labeling Algorithms. Tech. Rep. LBNL-59102, Lawrence Berkeley National
Laboratory (2005)

18. Wu, K., Otoo, E., Suzuki, K.: Optimizing two-pass connected-component labeling
algorithms. Pattern Analysis and Applications 12(2), 117–135 (2009)


	Two More Strategies to Speed Up Connected Components Labeling Algorithms

