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ABSTRACT

CNNs and Transformer-based architectures are recently dom-
inating the field of 3D medical segmentation. While CNNs
face limitations in the local receptive field, Transformers re-
quire significant memory and data, making them less suitable
for analyzing large 3D medical volumes. Consequently, fully
convolutional network models like U-Net are still leading the
3D segmentation scenario. Although efforts have been made
to reduce the Transformers computational complexity, such
optimized models still struggle with content-based reason-
ing. This paper examines Mamba, a Recurrent Neural Net-
work (RNN) based on State Space Models (SSMs), which
achieves linear complexity and has outperformed Transform-
ers in long-sequence tasks. Specifically, we assess Mamba’s
performance in 3D medical segmentation using three widely
recognized and commonly employed datasets and propose ar-
chitectural enhancements to improve its segmentation effec-
tiveness by mitigating the primary shortcomings of existing
Mamba-based solutions.

Index Terms— 3D Segmentation, Mamba, Medical
Imaging, RNN

1. INTRODUCTION

Automatic algorithms for the segmentation of anatomical
structures are widely adopted in medical image analysis to
aid medical practice and provide support for surgical plan-
ning [1]. Among the existing architectures, Convolutional
Neural Networks (CNNs) [2] have certainly dominated the
scene, with U-Net [3] emerging as a particularly effective
model due to its U-shaped encoder-decoder structure with
skip connections. Following the success of U-Net, numer-
ous variants, including Res-U-Net [4], Dense-U-Net [5],
V-Net [6], 3D U-Net, and nnU-Net [7], have introduced en-
hancements, each aiming to improve segmentation quality
through structural adjustments. Yet, CNNs inherently strug-
gle with capturing global dependencies due to the localized
nature of convolutional operations.

To address these limitations, recent studies have aimed
to integrate Transformer attention mechanisms [8] into U-
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Net architectures [9–11], enhancing models’ ability to cap-
ture both local and global features. Variants such as Tran-
sUNet [12], UNETR [13], and Swin-UNETR [14] have
achieved performance gains by integrating multi-head atten-
tion layers; however, these adaptations come with increased
computational costs, especially in large 3D volumes, due to
the quadratic complexity of standard attention mechanisms.
In response, methods like window-based and axial-based
attention have been proposed, and new linear attention mech-
anisms [15–17] have emerged, though they still fall short for
long-context modeling in high-dimensional data.

More recently, a State-Space Model (SSM)-based ar-
chitecture, Mamba [18], has shown remarkable promise in
tasks requiring long-context reasoning, such as NLP and ge-
nomics, effectively handling inputs of up to a million tokens
with linear-time complexity. Mamba has achieved state-of-
the-art performance on various tasks compared to models like
GPT-J-6B [19] and Pythia [20], establishing itself as a strong
alternative to Transformers for long-sequence processing.

Given their effectiveness and versatility, Mamba-based ar-
chitectures have been rapidly adapted to various domains, in-
cluding Computer Vision [21]. Several researchers have de-
voted significant efforts to adapting the Mamba architecture
for both 2D and 3D segmentation, demonstrating promising
results [22–26]. Initial adaptations, such as UMambaEnc and
UMambaBot [27], incorporate Mamba layers into U-Net ar-
chitectures, either in the encoder or in the bottleneck.

Despite the efficient segmentations provided by these
configurations, we identify a significant drawback inherent
in these methodologies that arises from the recurrent nature
of Mamba, which we denote as initial hidden state problem.
Specifically, when Mamba processes a sequence, it lacks
context for the early elements. In contrast, by the time it
processes the final ones, it has observed nearly the entire
sequence. Consequently, when a 3D volume is unrolled and
processed by a Mamba layer, the capability to process the
initial portions is generally weaker compared to that of the
later portions of the volume.

Paper Contribution. This paper explores further im-
provements to Mamba-based architectures for 3D segmenta-
tion and addresses the initial hidden state problem by propos-
ing bidirectional and multidirectional Mambas. Experimental
evaluations on datasets like MSD BrainTumour, Synapse
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Fig. 1: (a) depicts our (unidirectional) Mamba Layer (in gray
the original Mamba block), while (b) represents our bidirec-
tional 3D Mamba layer, which includes (a).

Multi-organ, and ACDC demonstrate the potential of these
Mamba-enhanced models for high-dimensional segmentation
tasks. Our code is publicly available to encourage further
development and ensure the reproducibility of the results.1

2. METHOD

State-Space Models (SSMs) are mathematical frameworks
employed to represent dynamic systems by mapping inputs
to latent states and outputs. To efficiently handle long se-
quences, the Mamba architecture leverages structured SSMs,
integrating the HiPPO theory [28] to enhance memory re-
tention and utilizing a selection mechanism to filter relevant
information. This approach addresses the limitations inherent
in traditional SSMs, particularly when applied within neural
networks. Mamba’s efficient implementation combines these
elements with linear projections and convolutions, making it
suitable for tasks that require complex sequence modeling.
For a comprehensive understanding, the readers are referred
to the original Mamba publication [18].

Segmenting Volumes with Mamba. One of the significant
issues in medical image segmentation is patch extraction
and down-sampling, which hinders voxel-wise details and
contextual information to make the training process compu-
tationally feasible. Unlike Vision Transformer, which faces
quadratic self-attention costs and requires patch extraction
to reduce input size, Mamba allows linear-time sequence
modeling of the input, preventing any sampling. However,
like Transformers, Mamba processes only one-dimensional
sequences. Thus, applying it to two-dimensional images
or three-dimensional volumes requires flattening pixels or
voxels into a one-dimensional sequence.

Motivated by these considerations and by taking inspi-
ration from the ViT architecture [29], our first proposal in-
tegrates a wrapped version of the Mamba block into a U-
Net-like U-shaped architecture. The wrapper, named Mamba

1https://github.com/LucaLumetti/TamingMambas
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Fig. 2: U-Net-like architecture integrating our proposed
Mamba layers. By properly selecting the Mamba layers
(green arrows), Unidirectional, Bidirectional, and Multidirec-
tional are obtained.

layer, consists of an additional LayerNorm and an MLP head
followed by a skip connection and takes a 3D volume with
dimensions (B, H, W, D, C) flattened along the spatial
dimensions as input.

More specifically, we incorporate a single unidirectional
Mamba layer (Fig. 1a) before each pooling convolution and
the bottleneck of U-Net. This strategic placement aims to im-
prove overall contextual understanding, addressing the typical
limitations of convolutions in capturing global context while
also minimizing the increase in parameters. We will refer to
this model as Unidirectional (Fig. 2).

Dealing with Multi-directionality. In contrast to the self-
attention mechanism of Transformers, where each token can
gather information from every other token in the sequence,
Mamba restricts each token to infer only information from
the current state. This results in an approximation of the past
tokens only and makes it sensitive to the sequence order. This
means that when Mamba is employed for image segmentation
tasks, the very first pixels (or voxels) in the sequence do not
have any context awareness.

Taking this into consideration, our second proposal con-
sists of integrating two Mamba layers into a unified module
called the bidirectional 3D Mamba layer. This module flattens
the spatial dimensions and manages the sequence bidirection-
ally by feeding one of the two layers with the sequence in
the backward direction. Subsequently, the output of the latter
layer is reversed to its original order and then summed with
the output of the former. Finally, the sum is normalized and
reshaped back into the original 3D shape (Fig. 1b).

Integrating U-Net architecture with such a bidirectional
Mamba layer in place of its unidirectional version results in
the model that we call Bidirectional. This variant aims to
overcome the limitations of unidirectional context awareness
by allowing each token to access information from both past

https://github.com/LucaLumetti/TamingMambas


Table 1: Left: 5-fold cross-validation results on ACDC, Synapse Abdomen, and BrainTumor datasets. Our proposals are
marked with *. The best results are in bold while the second best are underlined. Right: Computational comparison on the
Synapse dataset. Our proposals are marked with *. The parameters are expressed in millions [M] and VRAM in gigabytes
[GB]. Training and inference times, expressed in hours [h] and seconds [s], respectively, are obtained on an Nvidia A100 with
80GB of memory. All competitor models were trained for 1000 epochs, as recommended by most of their original papers, while
our method achieved convergence in only 300 epochs. Inference times are the average across all test volumes.

Model ACDC Brain Tumor Synapse Abdomen

DSC↑ HD95↓ DSC↑ HD95↓ DSC↑ Params GFLOPs VRAM Training Inference

C
N

N
s nnU-Net [7] 91.42 4.53 85.74 10.91 86.21 30.64 410.11 7.65 9.20 21.80

nnU-Net ResEnc [7] 90.84 4.12 85.60 7.70 86.61 57.50 502.49 10.00 10.00 22.20
MedNeXt-M-K3 [30] 91.64 6.35 85.27 18.99 85.70 32.65 248.03 15.32 67.60 153.60
MedNeXt-M-K5 [30] 90.70 6.67 84.79 17.30 86.00 34.75 308.01 18.85 218.30 416.90

Tr
an

sf
or

m
er

s TransU-Net [12] 89.75 13.18 64.14 32.27 77.24 96.07 88.91 16.25 26.50 73.90
CoTr [31] 90.90 9.96 68.21 9.35 84.67 50.12 369.22 8.10 18.60 41.40
UNETR [13] 88.72 9.04 70.92 19.15 78.10 92.49 75.76 15.29 15.40 39.50
Swin-UNETR [14] 91.36 6.77 84.07 11.02 83.64 62.83 384.20 13.91 22.00 38.70
nnFormer [9] 91.87 4.05 86.34 11.14 86.56 150.50 213.41 9.73 8.20 20.60

M
am

ba

UMambaBot [27] 90.44 3.80 86.35 7.35 86.88 41.95 156.32 13.55 22.00 54.20
UMambaEnc [27] 90.07 4.17 86.16 7.83 87.82 42.85 231.18 26.42 37.90 89.30
Ours (Unidirectional)* 91.33 3.82 86.66 7.91 87.48 61.49 480.90 25.61 12.70 99.60
Ours (Bidirectional)* 91.50 3.85 85.75 5.99 88.29 64.75 494.17 27.31 16.50 134.10
Ours (Multidirectional)* 92.04 3.84 86.70 5.98 88.93 68.46 527.56 36.92 18.20 149.00

and future positions within the sequence, ensuring a more
comprehensive context at every spatial position.

However, in 3D segmentation, spatial orientation spans
over three axes. By applying the bidirectional Mamba layer,
we are limiting the context integration across multiple direc-
tions, which is essential for each voxel to use spatial informa-
tion in all orientations. As an example, if we were to consider
only a single flattened sequence, such as (H, W, D), the
distance between the first token at index (0, 0, 0) and
the token at index (0, 0, 1) would be H ∗ W instead
of 1. Typically, the values of H and W are in the order of
102, resulting in a total distance of 104. A better solution
would instead be to process all the six possible permutations
of the three spatial dimensions (H, W, D) of a 3D vol-
ume, resulting in a total of 12 sequences when accounting
for both forward and backward directions. To meet mem-
ory constraints, only four of the possible directions have been
considered in our experiments, i.e., (H, W, D), (H, D,
W), (W, H, D), and (D, W, H). Incorporating multiple
directions maintains linear complexity while enhancing spa-
tial awareness. To aggregate the output sequences of all the
modules involved, we stack each sequence on a new axis and
compute the mean value across it. This module replaces the
bidirectional 3D Mamba layer, resulting in a new architecture
we refer to as Multidirectional.

Implementation Details. All of our models have been
trained for 300 epochs using RAdam, a learning rate of
0.0003, and a linear learning rate scheduler. Mamba blocks
have been initialized as proposed in the original Mamba
publication [18]. Training has been performed on an A100
Nvidia GPU using CUDA 11.8 and PyTorch 2.1.2.

3. EXPERIMENTAL RESULTS

Datasets. Following the literature on medical image seg-
mentation [9, 13, 31], experiments have been carried out on
three different well-known datasets: MSD BrainTumour [32],
Synapse Multi-organ [33], and ACDC [34]. The first includes
484 MRI images, which have been split for training and
testing according to [13]. The second dataset, Synapse, in-
cludes 3,779 axial contrast-enhanced abdominal CT images
from 30 scans. Following the split proposed by [12], our
experiments employ 18 cases for training and 12 for testing.
Finally, ACDC comprises 100 heart MRI scans, again split
for training and testing according to [12].

Metrics & Baselines. In our experiments, we include both
HD95 and Dice score metrics, commonly employed in medi-
cal image segmentation tasks.

Comparison has been performed on recently proposed
methods for medical image segmentation, considering CNN,
Transformers, and Mamba-based architectures. Our anal-
ysis includes the original nnU-Net [7] configuration mak-
ing use of the vanilla U-Net architecture (nnU-Net), and its
variations based on U-Net with residual connections in the
encoder (nnU-Net ResEnc). Furthermore, the Transformer-
inspired CNN modification based on ConvNeXt blocks, Med-
NeXt [30], has been considered in its two variations K3, and
K5. For what concerns Tranformer-based architectures, we
compare our proposals with TransU-Net [12], CoTr [31], a
hybrid architecture combining convolutional and Transformer
modules, UNETR [13], Swin-UNETR [14], and the recently
published nnFormer [9]. Finally, we include UMamba [27]
in its two variations UMambaBot and UMambaEnc.



In our experiments, a standardized scheme for hyperpa-
rameter configuration has been adopted. Whenever available,
the capabilities of the self-configuration method are em-
ployed. Otherwise, we opted for the default configuration
(if any) or the one closest to the respective dataset, reduc-
ing the learning rate until convergence. Models are trained
from scratch without any pre-training data, except for the
TransU-Net model, which is pre-trained as recommended in
its original paper [12]. The nnU-Net five-fold cross-validation
schema has always been employed.

Results. As shown in Tab. 1, our proposed models con-
sistently outperform all competing approaches, demonstrat-
ing superior overall performance across all the considered
datasets and metrics. Among the models evaluated, our pro-
posed Multidirectional consistently outperforms all the others
across most of the experimental settings. Notably, excluding
nnFormer, our Mamba-based architectures achieve improve-
ments of more than 3 Dice coefficient points compared to the
best performing Transformer-based architectures and up to 1
Dice point over nnU-Net.

Remarkably, our proposals surpass existing Mamba-based
models in the literature, demonstrating that addressing the
initial hidden state problem by employing multidirectional
Mamba layers enhances segmentation performances.

Finally, a comprehensive computational comparison is re-
ported considering the number of parameters, GFLOPs, and
GPU memory on the Synapse dataset. Our proposed models
have a higher number of parameters compared to CNN ap-
proaches, while they are comparable to or often have fewer
parameters than Transformer-based models. More specifi-
cally, the number of parameters of our models (∼60M) are,
on average, the double with respect to nnU-Net (∼31M),
comparable to those of nnU-Net ResEnc (∼57M), and much
lower than those of Transformer-based models (from ∼95M
of TransU-Net and UNETR, up to 150M of nnFormer).

4. CONCLUSION

This paper aims to assess the efficacy of the Mamba State
Space Model for 3D medical image segmentation, compar-
ing it with advanced convolutional and Transformer-based
architectures. In addition, we propose alternative designs
for Mamba architectures to address their key limitations.
Specifically, we integrate Mamba at various stages within the
standard U-Net framework, using both single-directional, bi-
directional, and multi-directional implementations. The over-
all framework blends convolutions and state-space models,
leveraging the former to encode precise spatial information
while addressing the latter to model long-range voxel-level
interactions. Mamba offers a dual advantage, providing a
global context alongside voxel-wise precision, the former
absent in traditional convolutional layers due to limited re-
ceptive fields and the latter absent in Transformers due to
their computational complexity.

Our experimental results highlight the substantial im-
provement in HD95 and DSC metrics on three well-known
datasets compared to nnU-Net and different Transformer-
based networks. We showcase Mamba versatility by adapting
it from its original use in text generation and large language
models to achieve state-of-the-art results in a completely dif-
ferent task. This adaptability highlights Mamba potential
beyond its initial design, demonstrating its efficacy on image
encoding and segmentation.
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