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Two More Strategies to Speed Up Connected 
Components Labeling Algorithms

Modeling of Decision Trees with Patterns Frequencies
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Idea: Improving the performance of existing
algorithms employing parallelization.

Solution proposal:

 Divide image into stripes;
 Compute first scan on each stripe (in

parallel);
 Merge border labels;

 Compute second scan (in parallel);

Results in ms on 
Windows PC with Intel 
Core i5-6600 @ 3.30 
GHz and Microsoft 
Visual Studio 2013 
(lower is better).

Average results in ms on a virtual Windows workstation with two Intel
Xeon X5650 CPU @ 2.67GHz (6 physical cores and 12 logical processors per

socket) and Microsoft Visual Studio 2013 (lower is better).

Results show that the speed up obtained with two threads on SAUF is ×1.5 in
average and it increases up to ×4 on random dataset when 12 threads are
involved. BBDT shows a greater speed up with low number of threads (i.e. ×1.7
with 2 threads, up to ×4.7 on random dataset with 8 threads)

Problem Statement The Testing Framework

Random Noise MIRflickr

3DPeS

The YACCLAB dataset

The problem of labeling the connected components (CCL) of a binary
image is well-defined and it is a fundamental task in image processing and
computer vision applications. Most of recent proposals exploit a scan mask
to perform CCL and focus on performance optimization making use of
optimal decision trees that allow a reduction of memory accesses.

Goals:

1) Improve the speed of CCL
taking into account image
patterns occurrences and
altering optimal decision
trees;

2) Speed up CCL operations
using parallelization.

All reported results are conducted with YACCLAB: an open-source C++
framework for CCL performance evaluation which includes both synthetic
and real images.

Check out the project website 
and join us on GitHub

Text

be geometrical interpreted as the
partitioning of an n-dimensional
hypercube where the vertexes
correspond to the 2𝑛𝑛 possible rules.
Associating to each condition removal
a unitary gain we can select the tree
which maximizes the total gain and
thus minimizes the number of
memory accesses.

Idea: We calculate the occurrence
frequencies of all possible mask
patterns in a reference dataset. Then,
considering as gain of a condition
removal the frequencies of associated
patterns, it is possible to generate
new optimal decision trees, further
reducing the total number of memory
accesses.

Creation of an optimal decision tree: if two branches lead to the same action,
the condition from which they originate may be removed. This conversion can

BBDT 
mask

SAUF mask

BBDT_ALL

BBDT

SAUF SAUF_2 SAUF_4 SAUF_8 SAUF_12 SAUF_16 SAUF_24

3DPeS 1.817 1.258 1.013 0.886 0.845 0.972 0.969

Fingerprints 0.793 0.548 0.431 0.361 0.338 0.402 0.426

Hamlet 13.449 8.682 6.726 5.651 5.338 5.615 5.446

Medical 6.316 4.414 3.104 2.626 2.542 2.742 2.745

MIRflickr 1.053 0.770 0.608 0.544 0.543 0.618 0.657

Tobacco800 22.075 14.362 11.083 9.445 9.057 9.457 9.166

Random 31.525 19.554 11.956 8.695 7.795 9.144 8.605

BBDT BBDT_2 BBDT_4 BBDT_8 BBDT_12 BBDT_16 BBDT_24

3DPeS 1.274 0.794 0.609 0.720 0.812 0.918 1.002

Fingerprints 0.606 0.386 0.298 0.274 0.290 0.347 0.388

Hamlet 10.528 5.989 4.342 4.528 5.186 5.423 6.146

Medical 4.945 3.051 1.831 2.060 2.407 2.621 2.998

MIRflickr 0.790 0.520 0.393 0.438 0.479 0.559 0.622

Tobacco800 16.587 9.590 6.518 7.207 8.206 9.215 10.375

Random 25.106 13.177 7.084 5.375 6.004 7.567 8.387

BBDT BBDT_ALL BBDT_ONE

3DPeS 0.678 0.621 0.645

Fingerprints 0.343 0.322 0.320

Hamlet 5.284 5.048 5.252

Medical 2.273 2.154 2.213

MIRflickr 0.450 0.414 0.424

Tobacco800 7.752 7.283 7.431
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